HEIDENHAIN

Aligning an Inclined Plane

Instructor: Michael Wiendl

Company: Dr. Johannes HEIDENHAIN GmbH Position: Trainer for NC Programming

Exercise

- Workpiece must be reworked
- Workpiece should also be aligned to a plane

Solution 1

- PROBING PL (manual operation)
- Machine with two rotary axes
- 3-D touch probe or mechanical touch probe

Solution 2

- Probing Cycle 431
- Machine with two rotary axes
- 3-D touch probe

HEIDENHAIN

Aligning a Plane
Manual Operation
TNC 620/640

Used for:

- Inserting a touch probe
- Manual Operation
- Probing functions
- Probing PL (PL = plane)

Arrangement of measured points

- Point $1 \rightarrow$ Point 2

Alignment in positive X axis

- Point 3

Alignment in positive Y axis

Note:
Point 3 must be above points 1 and 2, otherwise the alignment is not correct.

Align X+ axis:

- Press the PROBING ROT soft key

- Component edge with axis directions or
- Probe hole/stud combinations

Align Plane with Manual Probing Function

Align surface

HEIDENHAIN

Machining with 3-D Basic Rotation

- With Three Axes
- Tilted machining with PLANE SPATIAL
- From 3+1 Inclined Machining up to 5 Axes Simultaneously

Continued machining of workpiece

■ Inclination:

■ SPA: -0.9861°

- SPB: $+5.1200^{\circ}$
- SPC: $+0.0000^{\circ}$

Programming:

- With PLANE SPATIAL SPA+0 SPB+0 SPC+0 you tilt the tool until it is perpendicular to the aligned surface

■ Now you can program the machining as usual, with 3-axis operations
\rightarrow Please note that after every TOOL CALL, the tool has to be tilted again with PLANE SPATIAL.
\rightarrow You can reset the 3-D basic rotation with M143.

Programming:

- With PLANE SPATIAL SPA+0 SPB+0 SPC+0 you tilt the tool until it is perpendicular to the aligned surface

■ Now you can program the machining as usual, with 3+2-axis operations with all tilting functions (except PLANE AXIAL)
\rightarrow Please note that instead of PLANE RESET, PLANE SPATIAL SPA+0 SPB+0 SPC+0 has to be programmed in order to return to the tilted alignment.

Programming:

- With PLANE SPATIAL SPA+0 SPB+0 SPC+0 you tilt the tool until it is perpendicular to the aligned surface

■ The definition with PLANE AXIAL ignores the 3-D basic rotation

Machining incorrect

Programming:

■ Activate M128 (Tool Center Point Management)

■ Position the tool to 45° in the B axis: L B+45 R0

- The combination of

■ 3-D basic rotation

- M128
- L
generates an incorrect result.

Machining incorrect

Programming:

■ Activate M128 (Tool Center Point Management)

■ Position the tool to 45° in the B axis: LN TX+1 TY+0 TZ+1

■ The combination of
■ 3-D basic rotation

- M128
- LN
generates the correct result.

Machining correct

Programming:

■ Activate TCPM (Tool Center Point Management) with AXIS SPAT (spatial angles)

■ Position the tool to 45° in the B axis: L B+45 R0
\square The combination of

- 3-D basic rotation
- TCPM ... AXIS SPAT ...
- L
generates the correct result.

HEIDENHAIN

Aligning a Plane
 Program Run

Single Block/Full Sequence

Probing Cycle 431

- Three points are measured
- X coordinate
- Y coordinate
- Z coordinate
- The spatial angles of the plane are calculated from the measured points and saved in Q parameters:
- Q170 \rightarrow spatial angle in A
- Q171 \rightarrow spatial angle in B
- Q172 \rightarrow spatial angle in C
- Q158 \rightarrow Projection angle of the A axis
- Q1589 \rightarrow Projection angle of the B axis

Note:

The sequence of the measured points influences the angles

Arrangement of measured points

■ Point $1 \rightarrow$ Point 2
Alignment in positive X axis

- Point 3

Alignment in positive Y axis

Note:
Point 3 must be above points 1 and 2, otherwise the alignment is not correct.

Tilting the tool

■ The tool is tilted with

- PLANE SPATIAL
- CYCLE 19

■ PLANE PROJECTED

PLANE SPATIAL SPA+Q170 SPB+Q171 SPC+Q172 MOVE DIST0 FMAX
or
PLANE PROJECTED PROPR+Q158 PROMIN+Q159 ROT0 MOVE DISTO FMAX
or
Cycle 19 A+Q170 B+Q171 C+Q172 \&
L A+Q120 B+Q121 C+Q122 R0 FMAX
\rightarrow Tool is positioned vertically on the plane to be machined

HEIDENHAIN

Alignment of X Axis Parallel to
 the Component Edge

Exercise

- After having aligned the plane, align the X axis parallel to the edge of the component

Why?

■ Depending on the positioning of points 1 and 2, the positive X axis might not be parallel to the component edge

Solution

■ Probing Cycle 420

- Machine with two rotary axes
- 3-D touch probe

Probing Cycle 420

- The angle of the component edge is measured and saved in Parameter Q150
- The measured angle must be added to the existing tilting:

PLANE RELATIV SPC+Q150 MOVE DIST0 FMAX

Remanently saving parameters

- With QR parameters (remanent parameters) the most important parameters are saved:
- QR170 = Q170
- QR171 = Q171
- QR172 = Q172
- QR150 = Q150

The component is aligned.

Benefit

- The angles that are stored in 3-D ROT are the result from
- PLANE SPATIAL

■ PLANE RELATIV

- Therefore, no combination must be programmed.
- Read the tilt values

■ FN18 QR170 ID210 NR5 IDX1 \rightarrow SPA
■ FN18 QR171 ID210 NR5 IDX2 \rightarrow SPB

- FN18 QR172 ID210 NR5 IDX3 \rightarrow SPC

HEIDENHAIN

Align Tilted Plane

Exercise:

- A tilted plane should be accurately aligned

Programming:

- Tilt the tool to the surface with:

PLANE SPATIAL SPA+45 SPB+0 SPC+0

- Measure the plane as usual (TCH PROBE 431 always measures the difference to the active tilting)
■ Tilt the difference:
- PLANE RELATIV SPC+Q172 STAY

■ PLANE RELATIV SPB+Q171 STAY
■ PLANE RELATIV SPA+Q170 MOVE

- Surface can be machined

Note:

The tilting sequence SPC-SPB-SPA must be adhered to.

Switch to the Programming Station

HEIDENHAIN

Machining without 3-D Basic Rotation

- With Three Axes
- Tilted Machining with PLANE RELATIV
- Tilted Machining with PLANE SPATIAL
- From 3+1 Inclined Machining up to 5 Axes Simultaneously

Programming:

- The angles of the surface are saved in the following parameters:

■ QR170 = 3D-ROT A
■ QR171 = 3D-ROT B

- QR172 = 3D-ROT C

■ With SPA+QR170 SPB+QR171 SPC+QR172 you tilt the tool until it is perpendicular to the aligned surface

■ Now you can program the machining as usual, with 3-axis operations
\rightarrow Please note that after every TOOL CALL, the tool has to be tilted again with PLANE SPATIAL.

Programming:

- With PLANE SPATIAL SPA+QR170 SPB+QR171 SPC+QR172 you tilt the tool until it is perpendicular to the aligned surface

■ Since PLANE SPATIAL was already used for the alignment, PLANE RELATIV must be used to program the subsequent tilting movements

- In order to tilt back to the aligned plane, program PLANE SPATIAL SPA+QR170 SPB+QR171 SPC+QR172

Machining correct

Programming:

- Activate M128 (Tool Center Point Management)

■ With PLANE SPATIAL SPA+QR170 SPB+QR171 SPC+QR172 you tilt the tool until it is perpendicular to the aligned surface

- Position the tool to 45° in the B axis:

L B+45 R0

- The combination of
- M128
- PLANE SPATIAL
- L
generates an incorrect result

Programming:

■ Activate M128 (Tool Center Point Management)

■ With PLANE SPATIAL SPA+QR170 SPB+QR171 SPC+QR172 you tilt the tool until it is perpendicular to the aligned surface

- Position the tool to 45° in the B axis:

LN TX+1 TY+0 TZ+1

- The combination of
- M128
- PLANE SPATIAL
- LN
generates the correct result

Programming:

- Activate TCPM (Tool Center Point Management) with AXIS SPAT (spatial angles)
- With PLANE SPATIAL SPA+QR170 SPB+QR171 SPC+QR172 you tilt the tool until it is perpendicular to the aligned surface

■ Position the tool to 45° in the B axis:
L B+45 R0

- The combination of
- TCPM ... AXIS SPAT ...
- PLANE SPATIAL
- L
generates the correct result

HEIDENHAIN

Have fun aligning!

Please do not hesitate to contact us should you have any questions:

Thank you very much for your attention!

Michael WiendI

